s Summary 283

S5.11
5.12
S.13
S.14

5.15

5.16
S.17

(® Get employee numbers of employees who do not work on project COMP453.

(g) Get employee numbers of employees who work on all projects.

(h) Get employee numbers of employees who work on at least one project that
employee 107 works on.

Repeat Exercise 5.10 using QUEL.
Repeat Exercise 5.10 using QBE.
Express the queries of Exercise 4.16 of Chapter 4 using SQL or QUEL.

Using SQL, get the Empl_No, Skill, and average chef’s pay rate for the EMPLOYEE
relation shown in Figure 5.4.

For the sample tuples given in Figures 5.2 and 5.4, evaluate the QBE queries given in
Examples 5.53 through 5.59.

Repeat Exercise 5.15 for Examples 5.60 through 5.63.

Consjder a database for the Universal Hockey League (UHL), discussed in Chapter 2, which
records statistics on teams, players, and divisions of the league. Write the following queries
in SQL and QUEL:

(@) Give the names of the players who played as forwards in 1987 in the franchise
Blades.

(b) Find the names of all the goalies who played with the forward Ozzy Xavier over
the span of his hockey career.

(c) List forwards and their franchises for those forwards who had at least 50 goals in
the years 1985 and 1986. A player must have at least 50 goals in both the years
but may have been with two different franchises.

(d) Give the complete details of players who played in the same franchises as Ozzy
Xavier did over his career, but not necessarily in the same year or as a forward.

(¢) Compile the list of goalies who played during their career for franchises in St.

Louis, Edmonton, and Paris. A goalie should be listed if and only if he played in
all three cities.

Bibliographic Notes

The query language QUEL was defined by Stonebraker et al. (Ston 76). It was also described
in the paper by Wong and Youssefi (Wong 76) that described a method for the decomposition
of the queries for query processing. The precursor of SQL, SEQUEL, was described by Cham-
berlin et al. (Cham 76). Commercial versions are described in manufacturers’ reference man-
uals. QBE was proposed by Zloof (Zloo 77). The three languages are also described in varying
detail in textbooks by Date (Date 86a), Korth and Silberschatz (Kort 86), Maier (Maie 83),

and Uliman (Ullm 82). Semantics of updates and-their application to relational databases are
discussed in Desai et al. (Desa 87). ' '

Bibliography

(Astr 75) M. M. Astrahan & D. D. Chaniberlin, *‘Implementation of a Structured English Query Language,’’

CACM 18(10), 1975, pp. 580-587.

284 Chapter 5 Relational Database Manipulation

(Astr 76) M. M. Astrahan, et al., *‘System R: A Relational Approach to Database Management,”” ACM TODS
1(2), 1976, pp. 97-137.

(Boyc 75) R. F. Boyce, D. D. Chamberlin, W. F. King, & M. M. Hammer, “‘Specifying Queries as Relational
Expressions: The SQUARE Data Sublanguage,’” CACM 18(11), 1975, pp. 621-628.

(Cham 76) D. D. Chamberlin, et al., “*SEQUEL 2: A Unified Approach to Data Definition, Manipulation and
Control,”’ IBM J. of Res. and Dev. 20(6), 1976, pp. 560-575.

(Codd 86) E. F. Codd, ‘‘An Evaluation Scheme for Database Management Systems That Are Claimed To Be
Relational,”” Data Engineering Conf., 1986, pp. 720-729.

(Codd 88) E. F. Codd, ‘‘Fatal Flaws in SQL,”’ Datamation, August 15, 1988, pp. 45-48, September 1, 1988,
pp. 71-74.

(Date 86a) C. J. Date, **A Critique of the SQL Database Language,’”’ ACM SIGMOD Record, November, 1984,
Vol 14-3, pp. 8-54.

(Date 86b) C. J. Date, An Introduction to Database Systems 4th ed. Reading, MA. Addison-Wesley, 1986.
(Date 87a) C. J. Date, A Guide to the SQL Standard. Reading, MA: Addison-Wesley, 1987.
(Date 87b) C. J. Date, ‘‘Where SQL Falls Short,” Datamation, May 1, 1987, pp. 83-86.

(Desa 87) B. C. Desai, P. Goyal, F. Sadri, ‘‘Fact Structures and its Application to Updates in Relational
Databases,”’ Information Systems 12(2), 1987, pp. 215-221.

(Epst 77) R., Epstein, R., “‘A Tutorial on INGRES,’’ ERL-M77-25, University of California, December 1977.
Berkeley, CA:

(Held 75) C. D. Held, M. Stonebraker, & E. Wong, *‘INGRES: A Relational Database System,”’ Proc. ACM
Pacific 1975 Regional Conf., 1975, pp. 409-416.

(Kala 85) J. Kalash, et al., “‘INGRES Version 8 Reference Manual,”’ in UNIX 4.3. Berkley, CA: University of
Callforma, December 1985.

(Kort 86) H. F. Korth & A. Silberschatz, Database System Concepts,” New York: McGraw-Hill, 1986.
N (Lawr 88) A. Lawrence, “‘Living Up to the Hype,” Computing, May S, 1988, pp. 22-23.
: (Mm 83) D. Maier, The Theory of Relational Databases, Rockville, MD: Computer Science Press, 1983.

(Moad 88) I .Moad, **‘DB2 Performance Gets Kick with Closer Ties to 3090S, ESA,”’ Datamation, September
< 1988, pp. 19-20.

" (ORAC 871 SQL*PIus Reference Guide. Belmont, CA: Oracle Corp., July 1987.

(Pasc 88) F Pascal, *‘SQL Redundancy and DBMS Performance,’’ Database Programming and Design,
: December 1988, pp. 22-28.

(RT1 88) INGRES Reference Guide. Alameda, CA: Relational Technology Inc., August 1988

(Ston 76) M. Stonebraker, E. Wong, P. Kreps, & C. D. Held, ‘‘The Design and Implementation of INGRES,’
ACM TODS 1(3), 1976, pp. 189--222.

(Ulim 82) J. D. Ullman, Principles of Database Systems 2nd ed. Rockville, Md: Computer Science Press, 1982,

(Wong 76) E. Wong & K. Youssefi, *‘Decomposition—A Strategy for Query Processing,”” ACM Transactions
on Database Systems 1, pp. 223-241.

(Wood 79) J. Woodfill, et al., “INGRES Version 6.2 Reference Manual,’’ ERL Technical Memorandum M79-
© 43, Bed(eley, CA: University of California, 1979.

(Zloo 75) M. M. Zloof, *‘Query-By-Example: Operations on the Transitive Closure.’’ Yorktown Heightr, NY
IBM Research Report RC5526, 1975.

(Zloo 77) M. M. Zloof, “Query -By-Example: A Database Language,’* IBM Systems Journal 16(4), 1977, pp.
324-343,

Contents

6.1
6.2

‘.3
64

6.5

Relation Scheme and Relational Desjgn

Anomalies in a Database: A Consequence of
Bad Design

Universal Relation

Functional Dependency
6.4.1 Dependencies and Logical Implications
Inference Axioms
6.42 Closure of a Set of Functional Dependencies
6.4.3 Testing if F F X — Y: Algorithm to Compute a Closure
6.44 Testing if an FD is in a Closure
645 Covers
6.4.6 Nonredundant and Minimum Covers
6.4.7 Canonical Cover
6.4.8 Functional Dependencies and Keys
Full Functional Dependency
Prime Attribute and Nonprime Attribute
Partial Dependency
Transitive Dependency

Relational Database Design
6.5.1 Recharacterizing Relational Database Schemes
6.5.2 Normal Forms—Anomalies and Data Redundancies
Unnormalized Relation
First Normal Form
Second Normal Form
Third Normal Form
Normalization through Decomposition (Based on FDs)
6.5.3 Lossless Join and Dependency-Preserving
Decomposition
6.5.4 Algorithms to check if a Decomposition is Lossless ana
Dependensy-Preserving
6.5.5 Decomposition into Third Normal Form
ithm for Lossless and Dependency-Preserving
Third Normal Form Decomposition

6.5.6 Boyce Codd Normal Form

Lossless Join Decomposition into Boyce Codd
Normal Form

Chaprier

Relational
Database
Design

Chapter 6 Relational Database Design

6.1

A relation in a relational database is based on a relation scheme, which consists
of a number of attributes. A relational database is made up of a number of relations
and the relational database scheme, in turn, consists of a number of relation schemes.
In this chapter, we focus on the issues involved in the design of a database scheme
using the relational model. Section 6.2 discusses the importance of having a consis-
tent database without repetition of data and points out the anomalies that could be
introduced in a database with an undesirable design. Section 6.3 presents the univer-
sal relation assumption. In Section 6.4 we look at some of the theoretical results
from the functional dependency theory and present basic algorithms for the design
process. In Section 6.5 we present the relational database design process. This pro-
cess uses the functional dependencies among attributes to arrive at their desirable
groupings. We discuss the first, second, third, and Boyce Codd normal forms and
give algorithms for converting a relation in the first normal form into higher order
normal forms. The next chapter introduces the synthesis approach to relational data-
base design and higher order normal forms.

Relation Scheme and Relational Design

A relation scheme R is a plan that indicates the attributes involved in one or more
relations. The scheme consists of a set S of attributes {A,, A,, . . ., A,}, where
attribute A; is defined on domain D, for 1 < i =< n. We will use R(S), or R if there
is no confusion, to indicate both the logical construction of the relation (its scheme)
as well the name of this set 8 of attributes. Relation R on the relation scheme R is a
finite set of mappings or tuples {t,, t;, . . ., t;} such that for each t; € R, each of
the attribute value tj(A;) must be in the corresponding domain D;.

Example 6.1 Consider the relation SCHEDULE shown in Figure A. It contains the attri-
butes Prof, Course, Room, Max_Enroliment (enrollment limit), Day, Time.
Thus, the relation scheme for the relation SCHEDULE, say SCHEDULE,

Figure A The SCHEDULE relation.
L 4

Prof Course Room Max_Enrollment Day Time
Smith 353 AS32 40 mon 1145
Smith 353 A532 40 wed. 1145
Smith 351 C320 60 tue 115
Smith 351 C320 60 thu 115
Clark 355 H940 300 tue 115
Clark 355 H940 300 thu 115
Turner 456 B278 45 mon 845
Turner 456 B278 45 wed 845
Jamieson 459 D110 45 tue 1015
Jamieson 459 D110 45 thu 1015

5.2 Anomalies in a Database: A Consequence of Bad Design y _ 287

is (Prof, Course, Room, Max_Enrollment, Day, Time). The domain of the
attribute Prof (professors) is all the faculty members of the university; the
domain of the attribute Course is the courses offered by the university; that
of Room is all the rooms in the buildings of the university; that of Max_
Enrollment is an integer value and indicates the maximum enrollment in the
course (which is related to the capacity of the room, i.e., it should be less
than or equal to the capacity of the room in which the course is scheduled).
The domain of Day is {MON, TUE, WED, THU, FRI, SAT, SUN} and
that of Time is the possible times of day. W

The relation SCHEDULE of Figurc A has ten tuples, the first one being Prof =
Smith, Course = 353, Room = A532, Max_Enrollment = 40, Day = mon, Time
= 1145. As mentioned earlier, the tabular representation of a relation is only for the
purpose of illustration. Explicitly naming the columns of the table to show the map-
ping or association of an attribute and its value for a particular tuple avoids the
requirement of a particular ordering of the attributes in the relation scheme and hence
in the representation of the time-varying tuples of the relation. We will continue to
represent relations as tables. We will also write the attributes of the relation in a
particular order and show the tuples of the relation with the list of values for the
corresponding attributes in the same order. The attribute names will be attached to
the columns of the table when the tuples of a relation are shown in a table.

Since a relation is an abstraction of some portion of the real world that is being
modeled in the database, and since the real world changes with time, the tuples of a
relation also vary over time. Thus, tuples may be added, deleted, or updated over a
period of time. However, the relation scheme itself does not change. (at léast until
the database is reorganized).

Anomalies in a Database:
A Consequence of Bad Design

T
Consider the following relation scheme pertaining to the information about a student

maintained by an university:
STDINF(Name, Course, Phone_No, Major, Prof, Grade)

Figure 6.1 shows some tuples of a relation orn‘f/"ttlxe relation scheme STDINF
(Name, Course, Phone_No, Major, Prof, Grade). The functional dependencies'
among its attributes are shown in Figure 6.2. The key of the relation is Name Course
and the relation has, in addition, the following functional dependencies {Name —
Phone_No, Name — Major, Name Course — Grade, Course — Prof}.

Here the attribute Phone_No, which 1s not in any key of the relation scheme
STDINF, is not functionally dependent on the whole key but only on part of the

'Recall the definition of functional dependency from Chapter 2, repeated here: Given attributes X and Y (each of which may
contain one or more attributes), Y is said to be functionally dependent on X if a given value for each attribute in X uniquely
determines the value of the attributes in Y. X is called the determinant of the functional dependency (FD) and the FD is

denoted as X — Y.

Chapter 6 Relational Database Design

6.3

student takes the course only once, or if he or she has to repeat it to improve the
grade, the TRANSCRIPT relation stores only the highest grade.)

The third relation scheme records the teacher of each course.

One of the disadvantages of replacing the original relation scheme STDINF with
the three relation schemes is that the retrieval of certain information requires a natural
join operation to be performed. For instance, to find the majors of student who ob-
tained a grade of A in course 353 requires a join to be performed: (STUDENT_INFO
><I TRANSCRIPT). The same information could be derived from the original rela-
tion STDINF by selection and projection.

When we replace the original relation scheme STDINF with the relation
schemes STUDENT_INFO, TRANSCRIPT, and TEACHER, the consistency and
referential integrity constraints have to be enforced. The referential integrity enforce-
ment implies that if a tuple in the relation TRANSCRIPT exists, such as (Jones, 353,
in prog), a tuple must exist in STUDENT_INFO with Name = Jones and, further-
more, a tuplée must exist in TEACHER with Course = 353. The attribute Name,
which forms part of the key of the relation TRANSCRIPT, is a key of the relation
STUDENT_INFO. Such an attribute (or a group of attributes), which establishes a
relationship between specific tuples (of the same.or two distinct relations), is called
a foreign key. Notice that the attribute Course in relation TRANSCRIPT is also a
foreign key, since it is a key of the relation TEACHER.

Note that the decomposition of STDINF into the relation schemes STU-
DENT(Name, Phone_No, Major, Grade) and COURSE(Course, Prof) is a bad de-
composition for the following reasons:

1. Redundancy and update anomaly, because the data for the attributes Phone_No
and Major are repeated.

2. Loss of information, because we lose the fact that a student has a given grade
in a particular course.

The res't of this chapter examines the problem of the design of the relational data-
base and how to decide whether a given set of relations is better than another set.

Universal Relation

Let us consider the problem of designing a database. Such a design will be required
to represent a finite number of entity sets. Each entity set will be represented by a
number of its attributes. If we refer to the set of all attributes as the universal scheme
U then a relation R(U) is called the universal relation. The universal relation is a
single relation made up of all the attributes in the database. The- term universal
relation assumption is the assumption that all relations in a database are derived
from the universal relation by appropriate projection. The attribute names in the uni-
versal relation scheme U have to be distinct to avoid obvious confusion. One reason
for using the universal relation assumption is to allow the user to view the database
using such a relation. Consequently, the user does not have to remember the relation
schemes and which attributes are grouped together in each such scheme.

Consider the relation R; (Course, Department) in Figure 6.3: The attribute De-
partment is used to indicate the department responsible for the course. For instance,

6.3 Universal Relation

C]

Figure 6.3

S

Figure 6.4

Relation R;.
Course Department
353 Comp Sci
35§ Mathematics
456 | Mathematics
221 Decision Sci

course 353 is offered by and is under the jurisdiction of ‘the Comn(uter) Sci(ence)
department. ‘

The relation R,(Professor, Department) of Figure 6.4 shows another role or
interpretation of the attribute Department; here it is used to signify that a given
professor is assigned to a given department. Thus, Smith is a member of the Comp
Sci department. Note from Figures A, 6.3, and 6.4 that we are allowing for the
incidence of a professor teaching a course in a outside department. Professor Clark
of the Comp Sci department is teaching course 355 of the Mathematics department,
and Professor Turner of the Chemistry department is teaching course 456, also of the
Mathematics department.

The domain of the attribute Department in the relations R, and R; is the same,
that is, all the departments in the university. Let us consider the representation of the
data in the limited database indicated in Figures 6.3 and 6.4 as a umversal relation
U,, where U, is defined as U,(Course, Department, Professor). The problem of
using the universal relation U, becomes obvious when we try to represent the data
from the relations R; and R, as shown in Figures 6.3 and 6.4. Here we have to
decide whether or not data from different relations could appear in the same tuple of
the universal relation. In Figure 6.5 we do not allew the data from different relations
to appear in the same tuple of U, giving rise to a large number of empty or null
values (L1). These null values could signify one of three things: (1) the values, are
not known, but they exist, (2) the values do not exist, or (3) the attribute does not
apply. In case (1) we have to distinguish the null values by indicating them as 1;,
and thus the two null values 1; and 1; (for i # j) are not equal and indicate that the
values are not known to be the same.

In Figure 6.6, we have combined the data from the relations R, and R in the
same tuple of the universal relation U, with the scheme (Course, Department, Pro-

Relation R.

Professor Oepartment

Smith Comp Sci
Clark Comp Sci
Tumer Chemistry

Jamieson Mathematics

Chapter 6 Relational Database Design

same tuple and the value of the attributes in Y must be determined by the key value.
Similarly, if R represents a many-to-one relationship between two entities, say from
E, to E,, and if X contains attributes that form a key of E, and Y contains attributes
that contain a key of E,, again the FD X — Y will hold. But if R represents a one-
to-one relationship between entity E, and E,, the FD Y — X will hold in addition to
he FDX — Y.

Let R be a relation scheme where each of its attribute A; is defined on some
domain D, for 1 < i < n. Let X, Y, Z, etc. be subsets of {4,, Ay . . ., A We
will write X U Y as simply XY.

Let R be a relation on the relation scheme R. Then R satisfies the functional
dependency X — Y if a given set of values for each attribute in X uniquely deter-
mines each of the values of the attributes in Y. Y is said to be functionally dependent
on X. The functional dependency (FD) is denoted as X — Y, where X is the left-
hand side or the determinant of the FD and Y is the right-hand side of the FD. We
can say that the FD X — Y is satisfied on the relation R if the cardinality of
Ty(Ox=x(R)) is at most one. In other words, if two tuples t; and ¢; of R have the
same X value, the corresponding value of Y will be identical.

A functional dependency X — Y is said to be trivial if Y C X.

Example 6.2 In the relation SCHEDULE(Prof, Course, Room, Max_Enroliment, Day,

Time) of Figure A, the FD Course — Prof is satisfied. However, the FD
Prof — Course is not satisfied. W

In order to verify if a given FD X — Y is satisfied by a relation R on a relation
scheme R, we find any two tuples with the same X value; if the FD X — Y is
satisfied in R, then the Y values in these tuples must be the same. We repeat this
procedure until we have examined all such pairs of tuples with the same X value. A
simpler approach involves ordering the tuples of R on the X values so that all tuples
with the same X values are together. Then it is easy to verify if the corresponding Y
values are also the same and verify if R satisfies the FD X — Y.

R
Figure 6.8 The SCHEDULE relation.
Prof Course Room Max_Enrollment Day Time
Smith 353 A532 : 40 mon 1145
Smith 353 A532 40 wed 1145
Clark 355 H940 300 tue 115
Clark 355 H940 300 thu 115
Turner 456 B278 45 mon 845
Tumner 456 B278 45 wed 845
Jamieson 459 D110 45 tue 1015
Jamieson 459 D110 45 thu 1015

6.4 Functional Dependency 295

The FD X — Y on a relation scheme must hold for all possible relaticns defined
on the refation scheme R. Thus, we cannot look at a table representing a relation on
the scheme R at a point in time and say, simply by inspection, that some FD X —
Y holds. For example, if the relation SCHEDULE at some point in time contained
the tuples as shown in Figure 6.8, we might erroneously conclude that the FD {Prof
— Course} holds. The examination of the real world situation corresponding to the
relation scheme SCHEDULE tells us that a particular professor may be teaching
more than one course.

Exumple 6.3 In the relation scheme STDINF (Name, Course, Phone_No, Major, Prof.
Grade), the following functional dependencies are satisfied: {Name — Phone
_No, Name — Major, Name Course — Grade, Course —> Prof}. B

6.4.1 Dependencies and Logical Implications

Given a relation scheme R and a set of functional dependencies F, let us consider a
functional dependency X — Y, which is not in F. F can be said to logically imply
X — Y if for every relation R on the relation scheme R that satisfies the functional
dependengcies in F, R also satisfies X = Y.

F logically implies X — Y is written as F F X - Y.

Example 6.4 R=(AB C,D)andF = {A—>B,A— C, BC > D}, then FFA - D.
]

Inference Axioms

Suppose we have F, a set of functional dependencies. To determine whether a func-
tional dependency X — Y is logically implied by F (i.e., F | X — Y), we use a
set of rules or axioms. The axioms are numbered F1 through F6 to indicate that they

pertain to functional dependencies (as opposed to multivalued dependencies, which
we examine in Chapter 7).

In the following discussions, we assume that we have a relation scheme R(A,,
A, A . . ., Ay; R is a relation on the relation scheme R and W, X, Y, Z are
subsets of R. The symbol F used below is read as *‘logically implies.”’
F1: Reflexivity: X > X and V C Z)
F2: Augmentation: (X — Y) £ (XZ — Y, and XZ — YZ)
F3: Transitivity: X > Yand Y —» Z) E (X - Z)
F4: Additivity: X > Yand X > Z) E (X — YZ)
F5: Projectivity: X > YZ) F X—> Yand X — Z)
F6: Pseudotransitivity: (X = Y and YZ > W) E (XZ —» W)

Chapter 6 Relational Database Design

Example 6.6 LetR = (A,B,C,D)and F = {A—> B, A— C, BC — D}. Since A— B

and A — C, then by F4 A — BC. Now since BC — D, then by F3 A —
D,ie,FEA—>DandthusA—>DisinF*. m

An example of an FD not implied by a given set of FDs is illustrated below.

Example 6.7 Let F = {W—> X, X > Y, W — XY}. Then F* includes the set {W —

6.4.3

W,X->X,Y>Y,W—X, X—> Y, W— XY, W-> Y}. The first
three FDs follow from axiom F1; the next three FDs are in F and hence in
F*. Since W — XY, then by axiom F5, W — X and W — Y. However,
F* does not contain an FD, e. g., W — Z, because Z is not contained in
the set of attributes that appear in F. B

Testing if F | X — Y: Algorithm to Compute a Closure

To compute the closure F* for a set of FD F is a lengthy process because the number
of dependencies in F*, though finite, can be very large. The reason for computing
F* is to determine if the set of FDs F |F X — Y; this would be the czse if and only
if X = Y € F*. However, there is an alternative method to test if F = X - Y
without generating F*. The method depends on generating X*, the closure of X
under F.

X*, the ciosure of X with respect to the set of functional dependencies F, is
the set of attributes {A;, A, A;, . . ., A} such that each of the FDs X = 4;, 1 < i
=< m can be derived from F by the inference axioms. Also, by the additivity axiom
for functional dependency, F F X — Y if Y C X*. (By the completeness of the
axiom system, if F ¢ X — Y, then Y C X*—see lemma below.)

Having found X*, we can test if F | X — Y by checking if Y C X*: X —
Y is logically implied by F if and only if Y C X*.

We now present the algorithm to compute the closure X* given a set of FDs F
and a set of attributes X. The importance of computing the closure X* is that it can
be used to decide if any FD X — Y can be deduced from F. The following lemma
establishes that if Y C X* then FE X - Y.

Lemma: F | X — Y if and only if Y C X*.
Proof: Suppose that YC X*. Then by the definition of X*, X — A can be derived from

F using the inference rules for each A € Y. By the soundness of these rules, F F X —
A for each A € Y and by the additivity rule, F F X — Y. Now suppose that F ¢ X —

6.4 Functional Dependency 299

rm———————
Algorithm
6.1 Algorithm to Compute X*

Input: A set of functional dependencies F and a set of attributes X.
Output: The closure X* of X under the FDs in F. '

_ X* := X; (* initialize X* t0 X *)
change : = true;

while change do
begin
change : = false;
for each FDW — Z in F do
begin
if W C X* then do
begin
Xt:=X*UZ
change : = true;
end '
end
end ,

(* X* now contains the closure of X under F ¥)
M ‘

Y. Then by completeness of the-inference rules, X — Y can be derived from F using
them. By projectivity, X — A can be derived for each A € Y. This clearly implies that
Y C X* by the definition of X*.

Algorithm 6.1 to compute X* follows. It starts with the set X* initialized to)2,
the left-hand side of the FD X — Y, which is to be tested for logical implication
under F. For each FD W — Z in F, if W C X™, the algorithm modifies X* by
torming a union of X* and Z. The algorithm terminates when there is no change
in X*. ‘

Example 6.8 LetX = BCDandF = {A—> BC,CD— E, E— C, D — AEH, ABH —
BD, DH — BC}. We want to compute the closure X* of X under F.

We initialize X* to X, i.e., X* := BCD. Now since the left-hand side of
the FD CD — E is a subset of X*, i.e., CD C X7, X* is augmented by
the right-hand side of the FD, i.e., E; thus X' now becomes equal to
BCDE. Similarly, since D C X*, the right-hand side of the FD D — AEH
is added to X*, which now becomes ABCDEH. X" cannot be augmented
any further and Algorithm 6.1 ends with X* equal to ABCDEH. W

The time complexity of the closure algorithm can be derived as follows. Sup-
pose the number of attributes in F is a and the number of FDs in F is f where each
FD in F involves only one attribute on the right-hand side. Then the inner for loop
will be executed at most f times. one for each FD in F, and each such execution can

Chapter 6 Relational Database Design

6.4.4

take the time proportional to a to check if one set is contained in another set. Thus
the order of execution of the for loop is O(af). In the worst case each execution of
the while loop can increase the closure by one element and since there are f FDs, the
while loop can be repeated at most f times. Hence the time complexity of the algo-
rithm is O(af). The algorithm can be modified to run in time ‘proportional to the
number of symbols needed to represent the FDs in F. The modification takes into
account the fact that the FDs whose right-hand sides are already added to X* need
not be reconsidered in the for loop. Furthermore, the FDs whose left-hand side
lengths are greater than the current length of X* need not be tested in the for loop.

See the bibliographic notes for reference to a closure algorithm with these modifica-
tions. '

Testing if an FD is in a Closure

As mentioned earlier, to find out whether F |2 X — Y without computing F* re-
quires the computation of X* under the set of FDs F, and if Y C X* then F
logically implies the functional dependency X — Y, otherwise it does not. Algorithm
6.2 tests the membership of X — Y in F* by this indirect scheme. It uses Algorithm
6.1 to compute the closure of X under F. -

Exampie 6.9 Let F = {A— BC, CD > E, E— C, D — AEH, ABH — BD, DH —

6.4.5

BC}. We want to find if F F BCD — H.
Having computed BCD™ as being ABCDEH we can clearly see that the FD
BCD — H is implied by the FD F since H C BCD*. m

The time complexity of the membership algorithm is similar to the closure al-
gorithm because the membership algorithm uses the closure algorithm.

Covers

Given a set of FDs F, F* is the closure of F and contains all FDs that can be derived
from F. As mentioned earlier, F* can be very large; hence, we will look for a
smaller set of FDs that are representative of the closure of F. Suppose we have
another set of FDs G. We say that F and G are equivalent if the closure of F is
identically equal to the closure of G, i.e., F* = G™. If the sets of FDs F and G
are equivalent, we can consider one to be representative of the other or one covers
the other. Thus F covers G and G covers F.

equivalent (i.c., F = G) if the closurs of F is idéntically
G (e, F* = G*). If ¥ and G aro equivalent, then ¥ o0

